16.1 Introduction

Water soluble boron is considered to be immediately available to plants. Boron is extracted in a 1:2 soil to water ratio and the boron is determined photometrically by the curcumin method.

16.2 Apparatus

Soda glass Erlenmeyer flasks 50 cm3
Cork stoppers
Plastic measuring cylinder 50 cm3
Plastic funnels
Plastic bottles 50 cm3 capacity
Whatman no 542 and no 41 filter paper
Hotplate
Laboratory oven
Pipettes
Burette 50 cm3
Vitreosil silica crucibles 30 cm3
Spectrophotometer
Balance accurate to 0,1 g

NOTE: Do not use Pyrex, Jena or any other borosilicate glass under any circumstances.

16.3 Reagents

Calcium chloride, 0,05 mol dm$^{-3}$: Dissolve 7,35 g CaCl$_2$·2H$_2$O in de-ionised water and make up to 1 dm3. Store in a plastic bottle.

De-ionised water: Stored in a plastic bottle

Curcumin solution: Dissolve 0,04 g curcumin and 5 g oxalic acid in 100 cm3 ethanol 95%. This solution is stable for 2 to 3 days (5 days if kept in a refrigerator).

Boron stock standard solution, 100 mg dm$^{-3}$: Dissolve 0,572 g boric acid (AR) in 1 dm3 de-ionised water. Store solution in a plastic bottle.

Boron standard solution, 0,5 dm3: Dilute 5 cm3 of the boron stock solution to 1 dm3 with de-ionised water.
16.4 Procedure

16.4.1 Extraction

- Place 20 g air dry (≤ 2 mm) soil into a soda glass Erlenmeyer flask.
- Add 40 cm3 de-ionised water and shake by rotating the flask.
- Stopper the flask and heat on a hotplate until the temperature reaches 80°C ($±$ 5 minutes).
- Place the Erlenmeyer flask for 5 minutes in an oven set at 80°C.
- Add 3 to 5 drops 0.05 mol dm$^{-3}$ calcium chloride solution and shake the flask.
- Filter through Whatman no 542 filter paper fitted to a plastic funnel into a plastic bottle.
- Run a blank using 40 cm3 de-ionised water and treat in the same manner as the original sample.

NOTE: The cork stoppers reduce evaporation to a minimum.

16.4.2 Determination

- Pipette 1, 2, 3 and 5 cm3 of standard solution into crucibles. Use 1 cm3 de-ionised water for the blank.
- Pipette 1 cm3 soil extract for each sample into a crucible.
- Add 4 cm3 curcumin solution to each crucible.
- Place crucibles in oven at 50 $±$ 3°C until dry, leave in oven for an extra 15 minutes to ensure complete dryness.
- Wash the salts (using ethanol) into a 25 cm3 volumetric flask and make up to volume with ethanol.
- Shake the flask and filter through Whatman no 41 filter paper, using plastic funnels.
- Zero the spectrophotometer with the blank sample and read the absorbance for each sample at 540 nm.
- Plot a curve (absorbance against µg cm3 B) and read the µg cm3 B for each sample from the curve.

16.5 Calculation

Let B content of sample be b µg cm3.

$mg \ kg^{-1} \ B \ in \ soil = \frac{b \times 40}{20}$
16.6 Reference